
Case	Study:	Free	Variables

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	7.3

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Learning	Objectives

• At	the	end	of	this	lesson	the	student	should	be	
able	to:
– explain	the	notion	of	a	free	variable
– identify	the	free	variables	in	the	expressions	of	a	
simple	programming	language

– explain	two	algorithms	for	finding	the	free	
variables	of	an	expression	in	a	simple	
programming	language

2

A	Tiny	Programming	Language:	Fred

• The	Information:
FredExp = Variable | (lambda (Variable) FredExp)

| (FredExp FredExp)
Variable = x | y | z | ... | xx | yy | zz | ...

3

The	setting	is	that	we	are	writing	a	compiler	for	a	tiny	
programming	 language,	called	Fred.			Here	is	some	
information	 about	expressions	in	Fred: A	Fred-expression	 	is	
either	a	variable,	or	a	lambda	expression,	or	an	application.		
We've	written	down	some	suggestive	notation	here,	but	
we're	not	specifying	exactly	how	these	expressions	are	going	
to	be	written	down;	we're	only	saying	what	kind	of	
expressions		there	are	and	what	they	might (repeat,	might)	
look	like.	

The	Problem:	Free-Vars
A	variable	is	free if	it	occurs	in	a	place	that	is	not	
inside	a	lambda	with	the	same		name.

free-vars: FredExp -> SetOf<Variable>
examples (in terms of information, not data):
(free-vars x) => (list x)
(free-vars (lambda (x) x)) => empty
(free-vars (lambda (x) (x y)))

=> (list y)
(free-vars (z (lambda (x) (x y))))

=> (list z y) {(list y z) would be ok}
(free-vars (x (lambda (x) (x y)))

=> (list x y) {(list y x) would be ok}

4

For	clarity,	we've	written	
the	examples	in	terms	of	
our	hypothetical	
notation	for	FredExps.		
So	we	wouldn't	write
(free-vars (lambda	(x)	
x))

Instead,	we	would	write
(free-vars
<some	Racket	code	
that	constructs	a
representation	of	the
Fred-expression	
(lambda	(x)	x)>)

Data	Design
(define-struct var (name))
(define-struct lam (var body))
(define-struct app (fn arg))

;; A FredExp is one of
;; (make-var Symbol)
;; (make-lam Symbol FredExp)
;; (make-app FredExp FredExp)
;; INTERPRETATION: the cases represent
;; variables, lambdas, and applications,
;; repectively.

5

We	will	represent	
FredExps as	recursive	
structures.	This	is	our	first-
choice	representation	for	
information	 in	Racket—
you	can	almost	never	go	
wrong	choosing	 that	
representation.

Symbols	and	Quotation

• Our	data	design	uses	symbols.
• A	Symbol	is	a	primitive	data	type	in	Racket.
• It		looks	like	a	variable.
• To	introduce	a	symbol	in	a	piece	of	code,	we	
precede	it	with	a	quote	mark.		For	example,	'z
is	a	Racket	expression	whose	value	is	the	
symbol	z.

6

Quotation	(2)
• You	can	also	use	a	quote	in	front	of	a	list.		Quotation	tells	Racket	

that	the	thing	that	follows	it	is	a	constant	whose	value	is	a	symbol	
or	a	list.		Thus

• Thus	‘(a	b	c)	and	(list	‘a	‘b	‘c)	are	both	Racket		expressions	that	
denote	a	list	whose	elements	are	the	symbols	a,	b,	and	c.

• On	the	other	hand,	(a	b	c)	is	a	Racket	expression	that	denotes	the	
application	of	the	function	named	a to	the	values	of	the	variables	b
and	c.

• This	is	all	you	need	to	know	about	symbols	and	quotation	for	right	
now.

• There	is	lots	more	detail	in	HtDP/2e,		in	the	Intermezzo	entitled	
“Quote,	Unquote”.		But	that	chapter	covers	way	more	than	you	
need	for	this	course.

7

Data	Design	(2)
EXAMPLE:
(z (lambda (x) (x y)))
is represented by
(make-app
(make-var 'z)
(make-lam 'x
(make-app
(make-var 'x)
(make-var 'y))))

8

Now	that	we’ve	briefly	
explained	about	symbols	
and	quotation,	we	can	give	

an	example	of	the	
representation	of	a	Fred-

expression.

Destructor	Template
;; fredexp-fn : FredExp -> ?
#;
(define (fredexp-fn f)

(cond
[(var? f) (... (var-name f))]
[(lam? f) (...

(lam-var f)
(fredexp-fn (lam-body f)))]

[(app? f) (...
(fredexp-fn (app-fn f))
(fredexp-fn (app-arg f)))]))

9

In	Racket,	#;	marks	
the	next	S-expression	
as	a	comment.		So	this	
definition	 	is	actually	a	
comment.		This	is	

handy	for	templates.

Contract	&	purpose	statement
;; free-vars : FredExp -> SetOfSymbol
;; Produces the set of names that occur free in
the given FredExp
;; EXAMPLE:
;; (free-vars (z (lambda (x) (x y)))) = {y, z}
;; strategy: Use template for FredExp

We	will	represent	sets	as	lists	without	
duplication,	as	in	sets.rkt.

10

Here's	the	template	again
;; fredexp-fn : FredExp -> ?
#;
(define (fredexp-fn f)

(cond
[(var? f) (... (var-name f))]
[(lam? f) (...

(lam-var f)
(fredexp-fn (lam-body f)))]

[(app? f) (...
(fredexp-fn (app-fn f))
(fredexp-fn (app-arg f)))]))

11

What	happens	as	
we	descend	into	
the	structure?

What	happens	as	we	descend	into	the	
structure?

• We	lose	information	about	which	lambda-
variables	are	above	us.

• So	we'll	add	a	context	variable	to	keep	track	of	
the	lambda-variables	above	us
– when	we	hit	a	variable,	see	if	it's	already	in	this	
list.		If	so,	it's	not	free	in	the	whole	expression.	

– This	is	like	the	counter	in	mark-depth

12

With	context	variable
;; free-vars-in-subexp
;; : FredExp ListOfSymbol -> SetOfSymbol
;; GIVEN: a FredExp f that is part of some larger
;; FredExp f0, and a ListOfSymbol bvars
;; WHERE: bvars is the list of symbols that occur in
;; lambdas above f in f0
;; RETURNS: the set of symbols from f that are free
;; in f0.

;; EXAMPLE:
;; (free-vars-in-subexp
;; (z (lambda (x) (x y))) (list z))
;; = (list y)

13

The	invariant	(WHERE clause)	gives	
an	interpretation	 for	the	context	

variable

With	context	variable
;; free-vars-in-subexp
;; : FredExp ListOfSymbol -> SetOfSymbol
;; GIVEN: a FredExp f that is part of some larger
;; FredExp f0, and a ListOfSymbol bvars
;; WHERE: bvars is the list of symbols that occur in
;; lambdas above f in f0
;; RETURNS: the set of symbols from f that are free
;; in f0.

;; EXAMPLE:
;; (free-vars-in-subexp
;; (z (lambda (x) (x y))) (list z))
;; = (list y)

14

We	don’t	 know	what	f0 is.		We	only	
know	that	bvars is	the	list	of	symbols	
that	occur	above	f in	f0.	(See	Lesson	
7.1,	Slide	27)

Function	Definition
;; STRATEGY: Struct Decomp on f : FredExp
(define (free-vars-in-subexp f bvars)
(cond
[(var? f) (if (my-member? (var-name f) bvars)

empty
(list (var-name f)))]

[(lam? f) (free-vars-in-subexp (lam-body f)
(cons (lam-var f) bvars))]

[(app? f) (set-union
(free-vars-in-subexp (app-fn f) bvars)
(free-vars-in-subexp (app-arg f) bvars))]))

15

Adds	 the	lambda-variable	to	the	list	of	bound	
variables	in	the	body,	 so	the	called	function's	

WHERE	clause	will	become	true.

Is	the	variable	
already	bound?	

Function	Definition	
(part	2)

;; free-vars : FredExp -> SetOfSymbol
;; Produces the set of names that occur free in
the given FredExp
;; EXAMPLE:
;; (free-vars (z (lambda (x) (x y))))
;; = {y, z}

;; Strategy: call a more general function
(define (free-vars f)

(free-vars-in-subexp f empty))

16

There	are	no	variables	bound	
above	the	top.

Next	Steps

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	7.2
• Go	on	to	the	next	lesson

17

